Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A.

نویسندگان

  • Robin P Love
  • Huixin Xu
  • Linda Chelico
چکیده

APOBEC3A belongs to a family of single-stranded DNA (ssDNA) DNA cytosine deaminases that are known for restriction of HIV through deamination-induced mutational inactivation, e.g. APOBEC3G, or initiation of somatic hypermutation and class switch recombination (activation-induced cytidine deaminase). APOBEC3A, which is localized to both the cytoplasm and nucleus, not only restricts HIV but can also initiate catabolism of cellular DNA. Despite being ascribed these roles, there is a paucity of data available on the biochemical mechanism by which APOBEC3A deaminates ssDNA. Here we assessed APOBEC3A deamination activity on ssDNA and in dynamic systems modeling HIV replication (cytoplasmic event) and DNA transcription (nuclear event). We find that APOBEC3A, unlike the highly processive APOBEC3G, exhibits low or no processivity when deaminating synthetic ssDNA substrates with two cytosines located 5-63 nucleotides apart, likely because of an apparent K(d) in the micromolar range (9.1 μm). APOBEC3A was able to deaminate nascently synthesized (-)DNA in an in vitro model HIV replication assay but induced fewer mutations overall in comparison to APOBEC3G. However, the data indicate that the target deamination motif (5'-TC for APOBEC3A and 5'-CC for APOBEC3G) and not the number of mutations best predicted the ability to mutationally inactivate HIV. We further assessed APOBEC3A for the ability to deaminate dsDNA undergoing transcription, which could allow for collateral deaminations to occur in genomic DNA similar to the action of activation-induced cytidine deaminase. That APOBEC3A was able to deaminate dsDNA undergoing transcription suggests a genomic cost of a deamination-based retroviral restriction system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemica...

متن کامل

Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase.

The expression of activation-induced cytidine deaminase (AID) is prerequisite to a "trifecta" of key molecular events in B cells: class-switch recombination and somatic hypermutation in humans and mice and gene conversion in chickens. Although this critically important enzyme shares common sequence motifs with apolipoprotein B mRNA-editing enzyme, and exhibits deaminase activity on free deoxycy...

متن کامل

T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity

The deoxycytidine deaminase APOBEC3G (A3G) is expressed in human T cells and inhibits HIV-1 replication. When transfected into A3G-deficient epithelial cell lines, A3G induces catastrophic hypermutation by deaminating the HIV-1 genome. Interestingly, studies suggest that endogenous A3G in T cells induces less hypermutation than would be expected. However, to date, the specific deaminase activit...

متن کامل

Enzyme cycling contributes to efficient induction of genome mutagenesis by the cytidine deaminase APOBEC3B

The single-stranded DNA cytidine deaminases APOBEC3B, APOBEC3H haplotype I, and APOBEC3A can contribute to cancer through deamination of cytosine to form promutagenic uracil in genomic DNA. The enzymes must access single-stranded DNA during the dynamic processes of DNA replication or transcription, but the enzymatic mechanisms enabling this activity are not known. To study this, we developed a ...

متن کامل

The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization.

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 36  شماره 

صفحات  -

تاریخ انتشار 2012